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Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition
around the upper critical dimension
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We analyze numerically the critical behavior of an absorbing phase transition in a conserved lattice gas in an
external field. The external field is realized as a spontaneous creation of active particles that drives the system
away from criticality. Nevertheless, the order parameter obeys certain scaling laws for sufficiently small
external fields. These scaling laws are investigated and the corresponding exponents are determined in various
dimensions D=2,3,4,5). At the so-called upper critical dimensibg=4 one has to modify the usual scaling
laws by logarithmic corrections.
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I. INTRODUCTION boring sites on the cubic lattice is occupied by another par-
ticle. If all neighboring sites are empty the particle remains
Recently Rosskt al. introduced a conserved lattice gas inactive Active particles are moved in the next update step
(CLG) with a stochastic short range interaction that exhibitsto one of their empty nearest neighbor sites, selected at ran-
a continuous phase transition from an active state to an alsom. In the steady state, the system is characterized by the
sorbing nonactive state at a critical value of the particle denedensity of active sitep,. The densityp, is the order param-
sity [1]. The CLG model is expected to belong to a neweter of the absorbing phase transition, i.e., it vanishes if the
universality class of absorbing phase transitions charactecontrol parametep is lower than the critical valup;. In the
ized by a conserved field. Similar to the well known univer-thermodynamic limit the order parameter scales for zero field
sality hypothesis of directed percolatid@,3] the authors and forp>p; as
conjectured that “all stochastic models with an infinite num-
ber of absorbing states in which the order parameter evolu- p8p,h=0)~ 5pP (N
tion is coupled to a nondiffusive conserved field define a
unique universality class['1]. In order to check this hypoth- with ép=p/p.—1.
esis the scaling behavior, i.e. the values of the corresponding In this work we consider the CLG model in an external
critical exponents, has to be determined. The order parametéeld h conjugated to the order parameter, i.e., the field spon-
exponent as well as the exponent of the order parameter flu¢éaneously creates active particles. Clearly the particular
tuations were determined in R¢#]. Furthermore a modified implementation of the spontaneous creation of active par-
CLG model with random particle hopping was introduced inticles has to obey the particle conservation of the CLG model
Ref. [5] that mimics the mean-field caling behavior of the that is believed to be a relevant parameter, determining the
system. universality class. Instead of a creation of additional particles
In this work we investigated the CLG model in an exter- we realize the external field by particle movements that do
nal field. The external field is conjugated to the order paramnot change the total number of particles. Therefore we
eter, i.e., it is realized as a spontaneous creation of activehoose randomly.Ph particles on the lattice. Each of these
particles. Of course a spontaneous creation of active particlggarticles is then moved to one of its empty next neighbors. In
destroys the absorbing state and thus the absorbing phaiés way inactive particles may be activated and the number
transition at all. But analogous to ferromagnetic phase tranof active sites is increased.
sitions the order parameter can be described as a generalizedIn our simulations we start with randomly distributed par-
homogeneous function of the control parameter and of th&cles. The system is updated according to the above rules in
conjugated field in the critical regime. This scaling behaviorthe following way. One lists all active sites and updates these
is examined below =2,3), above D=5), and at the so- sites in a randomly chosen sequence. Then one mioPhs

called upper critical dimensiorD(=4). randomly chosen inactive particles to one of its empty next
neighbors. In the case that these movements create active
Il. MODEL AND SCALING BEHAVIOR particles, these particles are added to the list of active par-

ticles and will be updated in the following update step. Thus
We consider the CLG model dd-dimensional cubic lat- one update step contains both, the update of active sites and
tices of linear sizel. Initially one distributes randomlyN  the additional movements of inactive particles that mimics
=pL particles on the system wheyge denotes the particle the external field.
density. In order to mimic a repulsive interaction a given In Fig. 1 we plot the density of active sites vs tirfraim-
particle is considered ativeif at least one of its P neigh-  ber of update stepsat p. for two different values of the
driving field. After a certain relaxation time the system
reaches a steady state where the density of active sites fluc-
*Electronic address: sven@thp.uni.duisburg.de tuates around the average val{je(dp,h,t)) that is inter-
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10 ' | | Ap(8p,h=0)~5p 7. 5)
D=2 . . . .
a2 107 The fluctuation exponeny’ fulfills the scaling relatior] 7]
y'=v, D-28, (6)
f— where the exponent, describes how the spatial correlation
& length diverges at the transition point. In the critical regime
'y we assume that the fluctuations obey the scaling ansatz
N 5105 '~
h=210 Apq(5p.h)=\7"d(pX,hN"). )
-2
10 Setting5p A =1 one recovers Ed5) for h=0.
=256 Analogously to equilibrium phase transitions, by the sus-
ceptibility is defined as the derivative of the order parameter
0 5000 10000 15000 20000 with respect to the conjugated field
t
dh
FIG. 1. The density of active sites, as a function of time x(op,h)= &_hpa( op,h)

(number of update stepgor two different values of the external
field h. After a certain relaxation time the density of active sites
fluctuates around a well defined value. For too small fields finite-
size effects occur that results in strong fluctuation evésge lower
curve.

=\ 9Be(Sph VB h\1B). (8)

Approaching the transition point, the susceptibility diverges
for zero field as

preted as the order paramejgf op,h). Decreasing the ex- x(8p,h=0)~8p~ 7. (9)

ternal field below a certain value finite-size effects occur that

results in strong fluctuations. Two of these strong fluctuationg his result can be recovered from H8) by settingsp\ Y2

events can be seen in the lower curve of Fig. 1. The origin of=1 for h=0 and one gets the scaling relation

these effects is that the number of particle movementéy

create too few active particles and the system tends to the y=0-p8, (10

absorbing state. As a results the measured order parameter is ] )

shifted to lower values. To avoid these finite-size effects wevhich corresponds to the well known Widom equation of

increase the system size before these fluctuation events o@duilibrium phase transitions. Using this scaling relation we

cur. calculate in the following the value of the susceptibility ex-
The spontaneous creation of active particles destroys theonenty from the obtained values ¢ ando-. Notice thatin

absorbing state and thereby the phase transition itself. Alcontrast to the scaling behavior of equilibrium phase transi-

though the external field drives the system away from Criti_nons.the nonequilibrium absorbing phase transition is char-

cality the order parameter obeys certain scaling laws for sufacterized byy#y’.

ficiently small fields. At the critical density the order

parameter is expected to scale with the field(sse, for [ll. BELOW THE CRITICAL DIMENSION
instance6]) A D=2
pa(Sp=0h)~hA". (2 At the beginning of our analysis we consider the two-

dimensional CLG model at the critical densjty for various
Yalues of the driving fielch where the value of the critical
trol parameteidp and the applied field, the order parametes,(dp=0,h) is shown in a log-log plot
N~ B py —olB (Fig. 2. Approaching the critical pointh(—0), the order
pa(Op,N) =AT(SpA=F, A\ ), ®) parameter vanishes algebraically in agreement with(&q.
A regression analysis of the data yields the estimafoo

i - ioIT - ~UB—
with the scaling functiorr. Choosingdp \ 1 at zero =0.286+0.001. Using the value of the order parameter ex-

field, one recovers Eq1), whereashx ~?/#=1 leads to Eq.

(2) at the critical density ponentB=0.637+0.009[4] we geto=2.227+0.032.
Furthermore, we consider the fluctuations of the order pa.-. In the following we analyze the orQer parameter as a func-
rameter tion of the control parametesp for different fields fromh

=10 ° up to 2 10 *. The applied field results in a rounding
Apa(8p,0)=LP[{p(8p.n,)D) —(padp,,1))2]. (4  of the zero-field curve, i.e., the order parameter increases
smoothly with the control parameter for>0 (see inset of
For zero field the fluctuations are known to diverge ap-Fig. 3). According to the scaling ansatz of the order param-
proaching the critical poinit4] eter[Eq. (3)] we chooséh\ ~ /=1 and get the scaling form
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FIG. 2. The order parametgy, as a function of the fielt at the FIG. 4. The scaling plot of the order parameter fluctuatidpg

critical densityp:pc for D=2. The dashed line Corresponds to a for the two-dimensional model. The data are rescaled aCCOfding to
power-law behavior according to ER) with an exponent 0.286 Ed. (12) with 0=2.227 andy'/¢=0.18. The inset displays the
+0.001. unscaled data, i.e., the fluctuations are plotted as a function of the
densityp for different values of the fielth. Approaching the tran-
~ sition point 0 atp=p.), the peak of the fluctuations diverges.
Pl 80,0)=hF1T (8ph~1,1). (1 Point =0 atp=po). the p ¢
transition point f—0) this peak becomes a divergence sig-

H —Blo H —1lo
Thus plottingph as a function oféph~~” the curves nalling the critical point. In order to analyze the scaling be-

for different values of the driving field have to collapse onto havior of the fluctuations, we use E(7) and seth\=1
the scaling function. Using the above determined values of \yhich yields ' ’
B ando one gets an excellent data collapse that is shown in

Fig. 3. V) o~

gNext we consider the scaling behavior of the order param- Apy(Sp,n)=h"7"7d(5ph~ " 1). (12
eter fluctuationsAp,. The fluctuation data are shown for
different values of the external field in the inset of Fig. 4. ForSincep.; and o are already determined one can estimate the
finite fields the fluctuations display a peak. Approaching theexponenty’ by varying this exponent until one observes a
data collapse of the different fluctuation curves. The best
result is obtained fory'/0=0.18+0.02, leading toy’
=0.402+0.045, and the corresponding plot is shown in Fig.
4. The value agrees with’=0.384+0.023 [4] obtained
from a regression analysis according to Eg).

Additionally the fluctuation exponent’ can be estimated
via the scaling relation Eq(6). Using the estimatiorv,
=0.78+0.08 we gety'=0.286+0.161 that again agrees
with our result.

B.D=3

Analogously to the two-dimensional case, we first deter-
mine the exponent for D=3. The field dependence of the
order parameter is plotted in Fig. 5. A regression analysis
yields B/o=0.403+0.004, which leads to the estimation
=2.075+0.043 if one uses the valye=0.837+0.015[4].

In order to investigate the scaling behavior of the order

FIG. 3. The scaling plot of the order parameerfor the two- parametesr we simulated trle CLG model for fi_eld values from
dimensional model. The data are rescaled according téiEgwith ~ N=2 10" up to h=210". The corresponding curves as
B=0.637 ando=2.227. The inset displays the unscaled data, i.e.Well as the zero-field order parameter curve is shown in the
the order parametey, is plotted as a function of the densipyfor ~ Inset of Fig. 6. According to Eq(11) we plot the rescaled
different values of the fielth. The order parameter is driven away order parameter in the same figure. Usjfig-0.837 ando
from the critical point f,0) with increasing field. The dashed line =2.075 we get again an excellent data collapse of the differ-
corresponds to the zero-field behavior. ent curves.
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FIG. 5. The order parametgr, as a function of the fielt at the FIG. 7. The scaling plot of the order parameter fluctuatitpg

critical densityp=p. for D=3. The dashed line corresponds to a for the three-dimensional model. The data are rescaled according to

power-law behavior according to E() with an exponent 0.403 EQg. (12) with 0=2.075 andy'/o=0.1. The inset displays the un-

-+0.004. scaled data, i.e., the fluctuations are plotted as a function of the
densityp for different values of the fieldh.

Furthermore, we analyze the scaling behavior of the fluc- ) ] ) .
tuations A p(Sp,h) for the three-dimensional CLG model. threel-(.jlmens'mnall CLG model diverges algebraically qt the
The corresponding data are presented in the inset of Fig. fransition point with the exponent’ =0.208*0.042. Addi-
Similarly to the two-dimensional case, one tries to obtain dionally, the above results make it possible to estimate the
data collapse of these curves by varying the exponéht correlation Iength exponents via the scaling relation 9.

[Eq. (12)]. The best result is obtained foy’/oc=0.10 and one obtaing, =0.627+0.027.
+0.02 (see Fig. 7 that leads toy’ =0.208+ 0.042.

Previous investigations of the fluctuatiodp, for zero- IV. AT THE CRITICAL DIMENSION
field showed that\ p, diverges for6p— 0. But the numerical
data could be interpreted either as a power-law divergencgf
[Eqg. (5)] with an exponenty’ =0.18+0.06 or as a logarith-
mic growth[4]. Our results show that the fluctuations of the

At the upper critical dimensioB =4 the scaling behavior

the CLG model is affected by logarithmic correctidds,

i.e., the scaling ansatz E() has to be modified. Motivated

by the scaling behavior of the Ising model we assume that
the order parameter obeys in leading order the ansse

10’ ; - - ; Appendiy

pa( Op, ) =N[INN|T(SpA Y8 N [P, h N~ 7F|InN]9),
(13

where the exponenj® ando are given by the corresponding
mean-field valueg3=1 and o=2, respectively. Thus, for
zero field the asymptotic scaling behavior of the order pa-
rameter obeys

10

p.(p.h) nP°

pa(8p,h=0)~ 8plIn 5p|® (14)
10 with B=b+1. This behavior was already observed for the
CLG model with the logarithmic correction exponeBt
=0.241[8].
According to the above scaling ansatz the asymptotic field
dependence of the order parameter at the critical density is
FIG. 6. The scaling plot of the order parameggifor the three- given by
dimensional model. The data are rescaled according t¢1&Egwith
5=0.837 ando=2.075. The inset displays the unscaled data, i.e., p Sp=0h)~h*3Inh[* (19
the order parameter, is plotted as a function of the densityfor
different values of the field. The dashed line corresponds to the with X =s/2+1. In our analysis we plap,h~ Y2 as a function
zero-field behavior. of |Inh[* and vary the exponer® until one gets asymptoti-

-12.0 -8.0 40 . 00 4.0 8.0
oph
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FIG. 8. The order parametgy, as a function of the fielth at the
critical densityp=p. for D=4. According to the scaling ansatz Eq.
(15 we plot p,h~*2 as a function of|Inh[*. The expected
asymptotic behaviorp,h~*?=constinh|* is observed for3,
=0.41 (dashed ling The inset displays the original data. The
dashed line corresponds again to the ansata Esj.with 3 =0.41.

cally a straight line. The best result is obtained Yor0.41  Where the scaling argumeiis given in leading order by
and the corresponding plot is shown in Fig. 8. _ 12 b—s/2
Similar to the lower dimensions we consider the scaling x=2dph~*inh| ' (17)

behavior of the order parameter as a function of the contro{,rving the logarithmic correction exponents one gets a con-
parameter for different external fields. In the inset of Fig. 9vincing data collapse, which is shown in Fig. 9, far

; : —10°5
we plot p, vs p for different fields fromh=10""up toh  _ 49 andh—s/2= —0.17. The first value is in good agree-

=5 10. . Choosmg”u A U/B“n \P=1 the scaling ansaf£q. ment with, =0.41 obtained from the scaling behavior at the
(13] yields in leading order critical density[Eq. (15)]. Using the average valu® =
_h12 s~ +s/2=0.45 andb—s/2=—-0.17 we get the estimatioB
pd8p,)=h"Inh[*r(x1), (16 =b+1=0.28 that agrees witB=0.24 obtained from nu-
10" , , , , merical simulations in zero field.
0.06 , , Furthermore we consider how the logarithmic corrections
affect the scaling behavior of the fluctuations at the upper
critical dimension. Similar to the order paramefEgs. (16)
and(17)] we assume for the leading order of the fluctuations
the scaling behavior

FIG. 10. The scaling plot of the order parameter fluctuations
Ap, for the four-dimensional model. The data are rescaled accord-
ing to Eq.(19) using the mean-field value=2. The inset displays
the unscaled data, i.e., the fluctuations are plotted as a function of
the densityp for different values of the fieldh.

0.02

Apa(dp,n)=h"""7|Inh|"d(sph~ " |Inh|~7,1) (18
0'08.125 0.150 0.175

P with o= 2. It is known that the mean-field value of the fluc-
tuation exponent igy’ =0 that corresponds to a finite jump
of Ap, at the critical density4,5]. In order to avoid that\ p,
diverges forh— 0 at 5p=0 the logarithmic correction expo-
D=4 nentl” has to be set to zero too. Therefore we try to obtain a

2 | | data collapse of the fluctuation data according to the ansatz

p.(p.h) 1P [Ina**

-30.0 -26.0 -16.0 0:0 10I.0 ~ _ _
& 7" |Ink[®"” Apg(dp,h)=d(sph~"Inh|~7,1). (19

FIG. 9. The scaling plot of the order paramegerfor the four- A good data collapse is observed fpr=0.39 and the corre-
dimensional model, i.e., at the upper critical dimension. The datgponding plot is shown in Fig. 10.
are rescaled according to Eq4.6) and (17) using the mean-field
values=1 ando=2. The inset displays the unscaled data, i.e., V. ABOVE THE CRITICAL DIMENSION
the order parameter, is plotted as a function of the densityfor
different values of the field. The dashed line corresponds to the ~ Above the critical dimension, i.eD=5, the scaling be-
zero-field behavior. havior of the CLG model is expected to obey again the scal-
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FIG. 11. The order parametgr, as a function of the fieldh at FIG. 13. _The _scalin_g plot of the order parameter fluctuations
the critical densityp=p. for D=5. The dashed line corresponds to .Apa for the flve-dllmenswnal quel. The data are rescaled accord-
a power-law behavior according to E@) with 8/o=1/2. ing to Eq.(12) using the mean-field values=2 andy’=0. The

inset displays the unscaled data, i.e., the fluctuations are plotted as a

. . function of the density for different values of the field.
ing ansatz Eq(3) where the exponents are given by the

mean-field valuegs3=1, 0=2, and y'=0 [4,5], indepen-

dently of the particular dimension. Finally we consider the fluctuations of the five-
In Fig. 11 we plot the field dependence of the order padimensional CLG model. The inset of Fig. 13 shows how the

rameter at the critical density. For sufficiently small values offluctuations are affected by the fiekd With vanishing field

the field =10 *) we observe the expected scaling behav-the curves become steeper until one gets a jidin$l for h

ior p,~h'2 Thus the order parametgiyp,h) is deter- =0.

mined for various fields in this regimgrom h=2 10 ¢ up Considering the scaling behavior one has to take into ac-

to 10" 4). The curves are shown in the inset of Fig. 12. Res-count that the jump corresponds6=0. Therefore, we plot

caling these curves according to the ansatz Bgwith 8 the fluctuationsA p, as a function ofsp h~ 2. The resulting

=1 ando=2 one gets a good data collapsee Fig. 12 data collapse is shown in Fig. 13 and confirms the assumed

scaling behavior.

2

10

0.03

/ VI. CONCLUSIONS

We introduced a method that allows to apply an external
field in the CLG model. The external field obeys the particle
conservation and is conjugated to the order parameter, i.e., it
is realized as a spontaneous creation of active particles. We
considered the order parameter as well as its fluctuations of
the CLG model as a function of an external field in various
dimensions D=2,3,4,5). Although the external field drives
the system away from criticality the order parameter obeys
certain scaling laws for sufficiently small values of the ex-
ternal field. These scaling laws are investigated and the cor-
responding exponents are determined numerically. The ob-

500 250 00 250 tained values of the field exponemtare listed together with
5p p'e o'ther critical indices in Te}ble I. At the upper critical Q|men—
sionD =4 the usual scaling behavior has to be modified by

FIG. 12. The scaling plot of the order paramejgs for the  additional logarithmic corrections.
five-dimensional model, i.e., above the upper critical dimension.
The data are rescaled according to Effl) using the mean-field
valuesB=1 as well asos=2. The inset displays the unscaled data,
i.e., the order parameter, is plotted as a function of the density
for different values of the field. The dashed line corresponds to | would like to thank A. Hucht for helpful discussions and
the zero-field behavior. useful comments on the manuscript.
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p.(p.h) nP°
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TABLE I. The critical densityp. and the critical exponenis, o, v, andy of the CLG model for various
dimensiondD. The values of the susceptibility exponentre calculated via Eq10). The values op. and
[ are obtained from Ref4].

D Pc B o Y Y
2 0.34494 0.6370.009 2.2270.032 0.384-0.023 1.596-0.033
3 0.21791 0.83%0.015 2.075%:0.043 0.2080.042 1.238:0.046
4 0.15705 3 22 02 12
5 0.12298 1 2 0 1

4 ogarithmic corrections to the power-law behavior.

APPENDIX m(t,h=0)~tY?[Int|*. (A4)

Recently, the scaling behavior of the well known Ising i L .
model was investigated at the upper critical dimensidp ( The field dependence of the magnetization at the critical tem-
=4) and it was argued that the singular part of the fregP€rature (=0)
energy obeys the finite-size scaling and&iz m(t=0/h)~hY[In h| 23 (A5)
fL(t,h)=L"*F(tL2AnYoL ,hL3InY4L) (A1)

is obtained by setting\ ~%4In \|Y*= 1. Analogous one gets
wheret denotes the reduced temperature T/T.—1), han in leading order for the susceptibility and specific heat
applied magnetic field antd denotes the system size. Thus
we assume that the free energy is a generalized homoge- X(t,h=0)~t*1|lnt|1’3 (AB)
neous function

~ and
f(t,h,L)=AT(tA " Y3In A [Y6 hn 34 In A |Y4 LAY4)

(A2) c(t,h=0)~|Int|*? (A7)

with A\>0. Of course forn=L"* one recovers Eq(Al). ) ) )
This ansatz can be checked in the following way: the derival€spectively. In this way the ansatz E42) leads directly to

tive of the free energy with respect to the applied field lead¢he Eas.(A4)—(A7) that were already derived in the 1970s

to the scaling equation of the magnetization by Wegner qnd Riedel using renormalization group tech-
niques[10]. It is worth to mention that these are exact results
m(t,h,L) within the renormalization group theory, i.e., neither the val-
_ ues of the mean-field exponents nor the values of logarithmic
=AY AV In Mo, hn T3 I P4 LYY, correction exponents are obtained from approximation

(A3) schemes such as or 1/h-expansions.
In the case of the CLG model we choose a scaling ansatz
Choosingth ~Y4In A\[*6=1 one gets in leading order for the for the leading order of the order paramefgg. (13)] with
order parameter in the thermodynamic limit at zero field corresponds to EqA3).

[1] M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.[7] I. Jensen and R. Dickman, Phys. Rev4& 1710(1993.

Lett. 85, 1803(2000. [8] The logarithmic correction exponent=8.39 was determined
[2] H.K. Janssen, Z. Phys. B: Condens. Ma#t&r 151 (1981). in Ref. [4] using the ansatp,~(p—pJ)|In(p—py)|B. Fitting
[3] P. Grassberger, Z. Phys. B: Condens. Ma#igr365 (1982. the same data to the different ansatz 84) one gets the value
[4] S. Libeck, Phys. Rev. B4, 016123(2001). B=0.24.
[5] S. Libeck and A. Hucht, J. Phys. 24, L577 (200J). [9] N. Aktekin, J. Stat. Physl04, 1397 (2002.
[6] H. Hinrichsen, Adv. Phys49, 815 (2000. [10] F.J. Wegner and E.K. Riedel, Phys. Rev7B248(1973.

046150-7



