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Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition
around the upper critical dimension

S. Lübeck*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 12 December 2001; published 12 April 2002!

We analyze numerically the critical behavior of an absorbing phase transition in a conserved lattice gas in an
external field. The external field is realized as a spontaneous creation of active particles that drives the system
away from criticality. Nevertheless, the order parameter obeys certain scaling laws for sufficiently small
external fields. These scaling laws are investigated and the corresponding exponents are determined in various
dimensions (D52,3,4,5). At the so-called upper critical dimensionDc54 one has to modify the usual scaling
laws by logarithmic corrections.
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I. INTRODUCTION

Recently Rossiet al. introduced a conserved lattice ga
~CLG! with a stochastic short range interaction that exhib
a continuous phase transition from an active state to an
sorbing nonactive state at a critical value of the particle d
sity @1#. The CLG model is expected to belong to a ne
universality class of absorbing phase transitions charac
ized by a conserved field. Similar to the well known unive
sality hypothesis of directed percolation@2,3# the authors
conjectured that ‘‘all stochastic models with an infinite nu
ber of absorbing states in which the order parameter ev
tion is coupled to a nondiffusive conserved field define
unique universality class’’@1#. In order to check this hypoth
esis the scaling behavior, i.e. the values of the correspon
critical exponents, has to be determined. The order param
exponent as well as the exponent of the order parameter
tuations were determined in Ref.@4#. Furthermore a modified
CLG model with random particle hopping was introduced
Ref. @5# that mimics the mean-field caling behavior of th
system.

In this work we investigated the CLG model in an exte
nal field. The external field is conjugated to the order para
eter, i.e., it is realized as a spontaneous creation of ac
particles. Of course a spontaneous creation of active part
destroys the absorbing state and thus the absorbing p
transition at all. But analogous to ferromagnetic phase tr
sitions the order parameter can be described as a genera
homogeneous function of the control parameter and of
conjugated field in the critical regime. This scaling behav
is examined below (D52,3), above (D55), and at the so-
called upper critical dimension (D54).

II. MODEL AND SCALING BEHAVIOR

We consider the CLG model onD-dimensional cubic lat-
tices of linear sizeL. Initially one distributes randomlyN
5rL particles on the system wherer denotes the particle
density. In order to mimic a repulsive interaction a giv
particle is considered asactiveif at least one of its 2D neigh-
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boring sites on the cubic lattice is occupied by another p
ticle. If all neighboring sites are empty the particle rema
inactive. Active particles are moved in the next update st
to one of their empty nearest neighbor sites, selected at
dom. In the steady state, the system is characterized by
density of active sitesra. The densityra is the order param-
eter of the absorbing phase transition, i.e., it vanishes if
control parameterr is lower than the critical valuerc . In the
thermodynamic limit the order parameter scales for zero fi
and forr.rc as

ra~dr,h50!;drb ~1!

with dr5r/rc21.
In this work we consider the CLG model in an extern

field h conjugated to the order parameter, i.e., the field sp
taneously creates active particles. Clearly the particu
implementation of the spontaneous creation of active p
ticles has to obey the particle conservation of the CLG mo
that is believed to be a relevant parameter, determining
universality class. Instead of a creation of additional partic
we realize the external field by particle movements that
not change the total number of particles. Therefore
choose randomlyLDh particles on the lattice. Each of thes
particles is then moved to one of its empty next neighbors
this way inactive particles may be activated and the num
of active sites is increased.

In our simulations we start with randomly distributed pa
ticles. The system is updated according to the above rule
the following way. One lists all active sites and updates th
sites in a randomly chosen sequence. Then one movesLDh
randomly chosen inactive particles to one of its empty n
neighbors. In the case that these movements create a
particles, these particles are added to the list of active
ticles and will be updated in the following update step. Th
one update step contains both, the update of active sites
the additional movements of inactive particles that mim
the external field.

In Fig. 1 we plot the density of active sites vs time~num-
ber of update steps! at rc for two different values of the
driving field. After a certain relaxation time the syste
reaches a steady state where the density of active sites
tuates around the average value^ra(dr,h,t)& that is inter-
©2002 The American Physical Society50-1
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preted as the order parameterra(dr,h). Decreasing the ex
ternal field below a certain value finite-size effects occur t
results in strong fluctuations. Two of these strong fluctuati
events can be seen in the lower curve of Fig. 1. The origin
these effects is that the number of particle movements (LDh)
create too few active particles and the system tends to
absorbing state. As a results the measured order parame
shifted to lower values. To avoid these finite-size effects
increase the system size before these fluctuation events
cur.

The spontaneous creation of active particles destroys
absorbing state and thereby the phase transition itself.
though the external field drives the system away from cr
cality the order parameter obeys certain scaling laws for
ficiently small fields. At the critical density the orde
parameter is expected to scale with the field as~see, for
instance@6#!

ra~dr50,h!;hb/s. ~2!

As usual in critical phenomena the order parameter is
sumed to be a generalized homogeneous function of the
trol parameterdr and the applied fieldh,

ra~dr,h!5l r̃ ~drl21/b,hl2s/b!, ~3!

with the scaling functionr̃ . Choosingdr l21/b51 at zero
field, one recovers Eq.~1!, whereashl2s/b51 leads to Eq.
~2! at the critical density.

Furthermore, we consider the fluctuations of the order
rameter

Dra~dr,h!5LD@^ra~dr,h,t !2&2^ra~dr,h,t !&2#. ~4!

For zero field the fluctuations are known to diverge a
proaching the critical point@4#

FIG. 1. The density of active sitesra as a function of time
~number of update steps! for two different values of the externa
field h. After a certain relaxation time the density of active sit
fluctuates around a well defined value. For too small fields fin
size effects occur that results in strong fluctuation events~see lower
curve!.
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Dra~dr,h50!;dr2g8. ~5!

The fluctuation exponentg8 fulfills the scaling relation@7#

g85n'D22b, ~6!

where the exponentn' describes how the spatial correlatio
length diverges at the transition point. In the critical regim
we assume that the fluctuations obey the scaling ansatz

Dra~dr,h!5lg8d̃~drl,hls!. ~7!

Settingdr l51 one recovers Eq.~5! for h50.
Analogously to equilibrium phase transitions, by the su

ceptibility is defined as the derivative of the order parame
with respect to the conjugated field

x~dr,h!5
]h

]h
ra~dr,h!

5l12s/bc̃~drl21/b,hl2s/b!. ~8!

Approaching the transition point, the susceptibility diverg
for zero field as

x~dr,h50!;dr2g. ~9!

This result can be recovered from Eq.~8! by settingdrl1/b

51 for h50 and one gets the scaling relation

g5s2b, ~10!

which corresponds to the well known Widom equation
equilibrium phase transitions. Using this scaling relation
calculate in the following the value of the susceptibility e
ponentg from the obtained values ofb ands. Notice that in
contrast to the scaling behavior of equilibrium phase tran
tions the nonequilibrium absorbing phase transition is ch
acterized bygÞg8.

III. BELOW THE CRITICAL DIMENSION

A. DÄ2

At the beginning of our analysis we consider the tw
dimensional CLG model at the critical densityrc for various
values of the driving fieldh where the value of the critica
density is obtained from Ref.@4#. The field dependence o
the order parameterra(dr50,h) is shown in a log-log plot
~Fig. 2!. Approaching the critical point (h→0), the order
parameter vanishes algebraically in agreement with Eq.~2!.
A regression analysis of the data yields the estimationb/s
50.28660.001. Using the value of the order parameter e
ponentb50.63760.009@4# we gets52.22760.032.

In the following we analyze the order parameter as a fu
tion of the control parameterdr for different fields fromh
51025 up to 2 1024. The applied field results in a roundin
of the zero-field curve, i.e., the order parameter increa
smoothly with the control parameter forh.0 ~see inset of
Fig. 3!. According to the scaling ansatz of the order para
eter@Eq. ~3!# we choosehl2s/b51 and get the scaling form

-

0-2
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ra~dr,h!5hb/s r̃ ~drh21/s,1!. ~11!

Thus plottingrah
2b/s as a function ofdrh21/s the curves

for different values of the driving field have to collapse on
the scaling functionr̃ . Using the above determined values
b ands one gets an excellent data collapse that is show
Fig. 3.

Next we consider the scaling behavior of the order para
eter fluctuationsDra. The fluctuation data are shown fo
different values of the external field in the inset of Fig. 4. F
finite fields the fluctuations display a peak. Approaching

FIG. 2. The order parameterra as a function of the fieldh at the
critical densityr5rc for D52. The dashed line corresponds to
power-law behavior according to Eq.~2! with an exponent 0.286
60.001.

FIG. 3. The scaling plot of the order parameterra for the two-
dimensional model. The data are rescaled according to Eq.~11! with
b50.637 ands52.227. The inset displays the unscaled data, i
the order parameterra is plotted as a function of the densityr for
different values of the fieldh. The order parameter is driven awa
from the critical point (rc,0) with increasing field. The dashed lin
corresponds to the zero-field behavior.
04615
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transition point (h→0) this peak becomes a divergence s
nalling the critical point. In order to analyze the scaling b
havior of the fluctuations, we use Eq.~7! and sethls51,
which yields

Dra~dr,h!5h2g8/sd̃~drh21/s,1!. ~12!

Sincerc ands are already determined one can estimate
exponentg8 by varying this exponent until one observes
data collapse of the different fluctuation curves. The b
result is obtained forg8/s50.1860.02, leading tog8
50.40260.045, and the corresponding plot is shown in F
4. The value agrees withg850.38460.023 @4# obtained
from a regression analysis according to Eq.~5!.

Additionally the fluctuation exponentg8 can be estimated
via the scaling relation Eq.~6!. Using the estimationn'

50.7860.08 we getg850.28660.161 that again agree
with our result.

B. DÄ3

Analogously to the two-dimensional case, we first det
mine the exponents for D53. The field dependence of th
order parameter is plotted in Fig. 5. A regression analy
yields b/s50.40360.004, which leads to the estimations
52.07560.043 if one uses the valueb50.83760.015@4#.

In order to investigate the scaling behavior of the ord
parameter we simulated the CLG model for field values fr
h52 1025 up to h52 1024. The corresponding curves a
well as the zero-field order parameter curve is shown in
inset of Fig. 6. According to Eq.~11! we plot the rescaled
order parameter in the same figure. Usingb50.837 ands
52.075 we get again an excellent data collapse of the dif
ent curves.

.,

FIG. 4. The scaling plot of the order parameter fluctuationsDra

for the two-dimensional model. The data are rescaled accordin
Eq. ~12! with s52.227 andg8/s50.18. The inset displays the
unscaled data, i.e., the fluctuations are plotted as a function of
densityr for different values of the fieldh. Approaching the tran-
sition point (h→0 at r5rc), the peak of the fluctuations diverge
0-3
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S. LÜBECK PHYSICAL REVIEW E 65 046150
Furthermore, we analyze the scaling behavior of the fl
tuationsDra(dr,h) for the three-dimensional CLG mode
The corresponding data are presented in the inset of Fig
Similarly to the two-dimensional case, one tries to obtai
data collapse of these curves by varying the exponentg8/s
@Eq. ~12!#. The best result is obtained forg8/s50.10
60.02 ~see Fig. 7! that leads tog850.20860.042.

Previous investigations of the fluctuationsDra for zero-
field showed thatDra diverges fordr→0. But the numerical
data could be interpreted either as a power-law diverge
@Eq. ~5!# with an exponentg850.1860.06 or as a logarith-
mic growth@4#. Our results show that the fluctuations of th

FIG. 5. The order parameterra as a function of the fieldh at the
critical densityr5rc for D53. The dashed line corresponds to
power-law behavior according to Eq.~2! with an exponent 0.403
60.004.

FIG. 6. The scaling plot of the order parameterra for the three-
dimensional model. The data are rescaled according to Eq.~11! with
b50.837 ands52.075. The inset displays the unscaled data, i
the order parameterra is plotted as a function of the densityr for
different values of the fieldh. The dashed line corresponds to th
zero-field behavior.
04615
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three-dimensional CLG model diverges algebraically at
transition point with the exponentg850.20860.042. Addi-
tionally, the above results make it possible to estimate
correlation length exponents via the scaling relation Eq.~6!
and one obtainsn'50.62760.027.

IV. AT THE CRITICAL DIMENSION

At the upper critical dimensionD54 the scaling behavior
of the CLG model is affected by logarithmic corrections@4#,
i.e., the scaling ansatz Eq.~3! has to be modified. Motivated
by the scaling behavior of the Ising model we assume t
the order parameter obeys in leading order the ansatz~see
Appendix!

ra~dr,h!5lu ln lu l r̃ ~drl21/bu lub,h l2s/bu ln lus!,
~13!

where the exponentsb ands are given by the correspondin
mean-field valuesb51 and s52, respectively. Thus, for
zero field the asymptotic scaling behavior of the order
rameter obeys

ra~dr,h50!;dru ln druB ~14!

with B5b1 l . This behavior was already observed for t
CLG model with the logarithmic correction exponentB
50.24 @8#.

According to the above scaling ansatz the asymptotic fi
dependence of the order parameter at the critical densit
given by

ra~dr50,h!;h1/2u ln huS ~15!

with S5s/21 l . In our analysis we plotrah
21/2 as a function

of u ln huS and vary the exponentS until one gets asymptoti-

.,

FIG. 7. The scaling plot of the order parameter fluctuationsDra

for the three-dimensional model. The data are rescaled accordin
Eq. ~12! with s52.075 andg8/s50.1. The inset displays the un
scaled data, i.e., the fluctuations are plotted as a function of
densityr for different values of the fieldh.
0-4
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cally a straight line. The best result is obtained forS50.41
and the corresponding plot is shown in Fig. 8.

Similar to the lower dimensions we consider the scal
behavior of the order parameter as a function of the con
parameter for different external fields. In the inset of Fig
we plot ra vs r for different fields fromh51025 up to h
55 1024. Choosingh l2s/bu ln lus51 the scaling ansatz@Eq.
~13!# yields in leading order

ra~dr,h!5h1/2u ln huS r̃ ~x,1!, ~16!

FIG. 8. The order parameterra as a function of the fieldh at the
critical densityr5rc for D54. According to the scaling ansatz E
~15! we plot ra h21/2 as a function of u ln huS. The expected
asymptotic behaviorra h21/25constu ln huS is observed for S
50.41 ~dashed line!. The inset displays the original data. Th
dashed line corresponds again to the ansatz Eq.~15! with S50.41.

FIG. 9. The scaling plot of the order parameterra for the four-
dimensional model, i.e., at the upper critical dimension. The d
are rescaled according to Eqs.~16! and ~17! using the mean-field
valuesb51 ands52. The inset displays the unscaled data, i.
the order parameterra is plotted as a function of the densityr for
different values of the fieldh. The dashed line corresponds to th
zero-field behavior.
04615
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where the scaling argumentx is given in leading order by

x5drh21/2u ln hub2s/2. ~17!

Varying the logarithmic correction exponents one gets a c
vincing data collapse, which is shown in Fig. 9, forS
50.49 andb2s/2520.17. The first value is in good agree
ment withS50.41 obtained from the scaling behavior at t
critical density @Eq. ~15!#. Using the average valueS5 l
1s/250.45 andb2s/2520.17 we get the estimationB
5b1 l 50.28 that agrees withB50.24 obtained from nu-
merical simulations in zero field.

Furthermore we consider how the logarithmic correctio
affect the scaling behavior of the fluctuations at the up
critical dimension. Similar to the order parameter@Eqs.~16!
and~17!# we assume for the leading order of the fluctuatio
the scaling behavior

Dra~dr,h!5h2g8/su ln huGd̃~dr h21/s u ln hu2h,1! ~18!

with s52. It is known that the mean-field value of the flu
tuation exponent isg850 that corresponds to a finite jum
of Dra at the critical density@4,5#. In order to avoid thatDra
diverges forh→0 atdr50 the logarithmic correction expo
nentG has to be set to zero too. Therefore we try to obtai
data collapse of the fluctuation data according to the ans

Dra~dr,h!5d̃~dr h21/2u ln hu2h,1!. ~19!

A good data collapse is observed forh50.39 and the corre-
sponding plot is shown in Fig. 10.

V. ABOVE THE CRITICAL DIMENSION

Above the critical dimension, i.e.,D>5, the scaling be-
havior of the CLG model is expected to obey again the sc

ta

,

FIG. 10. The scaling plot of the order parameter fluctuatio
Dra for the four-dimensional model. The data are rescaled acc
ing to Eq.~19! using the mean-field values52. The inset displays
the unscaled data, i.e., the fluctuations are plotted as a functio
the densityr for different values of the fieldh.
0-5
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S. LÜBECK PHYSICAL REVIEW E 65 046150
ing ansatz Eq.~3! where the exponents are given by t
mean-field valuesb51, s52, and g850 @4,5#, indepen-
dently of the particular dimension.

In Fig. 11 we plot the field dependence of the order p
rameter at the critical density. For sufficiently small values
the field (h<1024) we observe the expected scaling beha
ior ra;h1/2. Thus the order parameterra(dr,h) is deter-
mined for various fields in this regime~from h52 1026 up
to 1024). The curves are shown in the inset of Fig. 12. R
caling these curves according to the ansatz Eq.~3! with b
51 ands52 one gets a good data collapse~see Fig. 12!.

FIG. 11. The order parameterra as a function of the fieldh at
the critical densityr5rc for D55. The dashed line corresponds
a power-law behavior according to Eq.~2! with b/s51/2.

FIG. 12. The scaling plot of the order parameterra for the
five-dimensional model, i.e., above the upper critical dimensi
The data are rescaled according to Eq.~11! using the mean-field
valuesb51 as well ass52. The inset displays the unscaled da
i.e., the order parameterra is plotted as a function of the densityr
for different values of the fieldh. The dashed line corresponds
the zero-field behavior.
04615
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Finally we consider the fluctuations of the five
dimensional CLG model. The inset of Fig. 13 shows how
fluctuations are affected by the fieldh. With vanishing field
the curves become steeper until one gets a jump@4,5# for h
50.

Considering the scaling behavior one has to take into
count that the jump corresponds tog850. Therefore, we plot
the fluctuationsDra as a function ofdr h21/2. The resulting
data collapse is shown in Fig. 13 and confirms the assum
scaling behavior.

VI. CONCLUSIONS

We introduced a method that allows to apply an exter
field in the CLG model. The external field obeys the partic
conservation and is conjugated to the order parameter, i.
is realized as a spontaneous creation of active particles.
considered the order parameter as well as its fluctuation
the CLG model as a function of an external field in vario
dimensions (D52,3,4,5). Although the external field drive
the system away from criticality the order parameter ob
certain scaling laws for sufficiently small values of the e
ternal field. These scaling laws are investigated and the
responding exponents are determined numerically. The
tained values of the field exponents are listed together with
other critical indices in Table I. At the upper critical dimen
sionDc54 the usual scaling behavior has to be modified
additional logarithmic corrections.

ACKNOWLEDGMENTS

I would like to thank A. Hucht for helpful discussions an
useful comments on the manuscript.

.

,

FIG. 13. The scaling plot of the order parameter fluctuatio
Dra for the five-dimensional model. The data are rescaled acc
ing to Eq. ~12! using the mean-field valuess52 andg850. The
inset displays the unscaled data, i.e., the fluctuations are plotted
function of the densityr for different values of the fieldh.
0-6
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TABLE I. The critical densityrc and the critical exponentsb, s, g8, andg of the CLG model for various
dimensionsD. The values of the susceptibility exponentg are calculated via Eq.~10!. The values ofrc and
b are obtained from Ref.@4#.

D rc b s g8 g

2 0.34494 0.63760.009 2.22760.032 0.38460.023 1.59060.033
3 0.21791 0.83760.015 2.07560.043 0.20860.042 1.23860.046
4 0.15705 1a 2a 0a 1a

5 0.12298 1 2 0 1

aLogarithmic corrections to the power-law behavior.
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APPENDIX

Recently, the scaling behavior of the well known Isin
model was investigated at the upper critical dimensiondc
54) and it was argued that the singular part of the f
energy obeys the finite-size scaling ansatz@9#

f L~ t,h!5L24 f̃ ~ tL2ln1/6L,hL3ln1/4L ! ~A1!

wheret denotes the reduced temperature (t5T/Tc21), h an
applied magnetic field andL denotes the system size. Thu
we assume that the free energy is a generalized hom
neous function

f ~ t,h,L !5l f̃ ~ tl21/2u ln lu1/6,hl23/4u ln lu1/4,Ll1/4!
~A2!

with l.0. Of course forl5L24 one recovers Eq.~A1!.
This ansatz can be checked in the following way: the deri
tive of the free energy with respect to the applied field lea
to the scaling equation of the magnetization

m~ t,h,L !

5l1/4u ln lu1/4m̃~ tl21/2u ln lu1/6,hl23/4u ln lu1/4,Ll1/4!.

~A3!

Choosingtl21/2u ln lu1/651 one gets in leading order for th
order parameter in the thermodynamic limit at zero field
e

04615
e
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s

m~ t,h50!;t1/2 u ln tu1/3. ~A4!

The field dependence of the magnetization at the critical te
perature (t50)

m~ t50,h!;h1/3 u ln hu1/3 ~A5!

is obtained by settinghl23/4u ln lu1/451. Analogous one gets
in leading order for the susceptibility and specific heat

x~ t,h50!;t21 u ln tu1/3 ~A6!

and

c~ t,h50!;u ln tu1/3, ~A7!

respectively. In this way the ansatz Eq.~A2! leads directly to
the Eqs.~A4!–~A7! that were already derived in the 1970
by Wegner and Riedel using renormalization group te
niques@10#. It is worth to mention that these are exact resu
within the renormalization group theory, i.e., neither the v
ues of the mean-field exponents nor the values of logarith
correction exponents are obtained from approximat
schemes such ase- or 1/n-expansions.

In the case of the CLG model we choose a scaling an
for the leading order of the order parameter@Eq. ~13!# with
corresponds to Eq.~A3!.
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